254 research outputs found

    A comparative study of general fuzzy min-max neural networks for pattern classification problems

    Full text link
    © 2019 Elsevier B.V. General fuzzy min-max (GFMM) neural network is a generalization of fuzzy neural networks formed by hyperbox fuzzy sets for classification and clustering problems. Two principle algorithms are deployed to train this type of neural network, i.e., incremental learning and agglomerative learning. This paper presents a comprehensive empirical study of performance influencing factors, advantages, and drawbacks of the general fuzzy min-max neural network on pattern classification problems. The subjects of this study include (1) the impact of maximum hyperbox size, (2) the influence of the similarity threshold and measures on the agglomerative learning algorithm, (3) the effect of data presentation order, (4) comparative performance evaluation of the GFMM with other types of fuzzy min-max neural networks and prevalent machine learning algorithms. The experimental results on benchmark datasets widely used in machine learning showed overall strong and weak points of the GFMM classifier. These outcomes also informed potential research directions for this class of machine learning algorithms in the future

    Data analytics enhanced data visualization and interrogation with parallel coordinates plots

    Full text link
    © 2018 IEEE. Parallel coordinates plots (PCPs) suffer from curse of dimensionality when used with larger multidimensional datasets. Curse of dimentionality results in clutter which hides important visual data trends among coordinates. A number of solutions to address this problem have been proposed including filtering, aggregation, and dimension reordering. These solutions, however, have their own limitations with regard to exploring relationships and trends among the coordinates in PCPs. Correlation based coordinates reordering techniques are among the most popular and have been widely used in PCPs to reduce clutter, though based on the conducted experiments, this research has identified some of their limitations. To achieve better visualization with reduced clutter, we have proposed and evaluated dimensions reordering approach based on minimization of the number of crossing pairs. In the last step, k-means clustering is combined with reordered coordinates to highlight key trends and patterns. The conducted comparative analysis have shown that minimum crossings pairs approach performed much better than other applied techniques for coordinates reordering, and when combined with k-means clustering, resulted in better visualization with significantly reduced clutter

    Adaptive community detection incorporating topology and content in social networks<sup>✰</sup>

    Full text link
    © 2018 In social network analysis, community detection is a basic step to understand the structure and function of networks. Some conventional community detection methods may have limited performance because they merely focus on the networks’ topological structure. Besides topology, content information is another significant aspect of social networks. Although some state-of-the-art methods started to combine these two aspects of information for the sake of the improvement of community partitioning, they often assume that topology and content carry similar information. In fact, for some examples of social networks, the hidden characteristics of content may unexpectedly mismatch with topology. To better cope with such situations, we introduce a novel community detection method under the framework of non-negative matrix factorization (NMF). Our proposed method integrates topology as well as content of networks and has an adaptive parameter (with two variations) to effectively control the contribution of content with respect to the identified mismatch degree. Based on the disjoint community partition result, we also introduce an additional overlapping community discovery algorithm, so that our new method can meet the application requirements of both disjoint and overlapping community detection. The case study using real social networks shows that our new method can simultaneously obtain the community structures and their corresponding semantic description, which is helpful to understand the semantics of communities. Related performance evaluations on both artificial and real networks further indicate that our method outperforms some state-of-the-art methods while exhibiting more robust behavior when the mismatch between topology and content is observed

    Electrostatic Field Classifier for Deficient Data

    Get PDF
    This paper investigates the suitability of recently developed models based on the physical field phenomena for classification problems with incomplete datasets. An original approach to exploiting incomplete training data with missing features and labels, involving extensive use of electrostatic charge analogy, has been proposed. Classification of incomplete patterns has been investigated using a local dimensionality reduction technique, which aims at exploiting all available information rather than trying to estimate the missing values. The performance of all proposed methods has been tested on a number of benchmark datasets for a wide range of missing data scenarios and compared to the performance of some standard techniques. Several modifications of the original electrostatic field classifier aiming at improving speed and robustness in higher dimensional spaces are also discussed

    Directed closure coefficient and its patterns.

    Full text link
    The triangle structure, being a fundamental and significant element, underlies many theories and techniques in studying complex networks. The formation of triangles is typically measured by the clustering coefficient, in which the focal node is the centre-node in an open triad. In contrast, the recently proposed closure coefficient measures triangle formation from an end-node perspective and has been proven to be a useful feature in network analysis. Here, we extend it by proposing the directed closure coefficient that measures the formation of directed triangles. By distinguishing the direction of the closing edge in building triangles, we further introduce the source closure coefficient and the target closure coefficient. Then, by categorising particular types of directed triangles (e.g., head-of-path), we propose four closure patterns. Through multiple experiments on 24 directed networks from six domains, we demonstrate that at network-level, the four closure patterns are distinctive features in classifying network types, while at node-level, adding the source and target closure coefficients leads to significant improvement in link prediction task in most types of directed networks

    An Effective Multi-Resolution Hierarchical Granular Representation based Classifier using General Fuzzy Min-Max Neural Network

    Full text link
    IEEE Motivated by the practical demands for simplification of data towards being consistent with human thinking and problem solving as well as tolerance of uncertainty, information granules are becoming important entities in data processing at different levels of data abstraction. This paper proposes a method to construct classifiers from multi-resolution hierarchical granular representations (MRHGRC) using hyperbox fuzzy sets. The proposed approach forms a series of granular inferences hierarchically through many levels of abstraction. An attractive characteristic of our classifier is that it can maintain a high accuracy in comparison to other fuzzy min-max models at a low degree of granularity based on reusing the knowledge learned from lower levels of abstraction. In addition, our approach can reduce the data size significantly as well as handle the uncertainty and incompleteness associated with data in real-world applications. The construction process of the classifier consists of two phases. The first phase is to formulate the model at the greatest level of granularity, while the later stage aims to reduce the complexity of the constructed model and deduce it from data at higher abstraction levels. Experimental analyses conducted comprehensively on both synthetic and real datasets indicated the efficiency of our method in terms of training time and predictive performance in comparison to other types of fuzzy min-max neural networks and common machine learning algorithms

    Change point detection in social networksCritical review with experiments

    Full text link
    © 2018 Elsevier Inc. Change point detection in social networks is an important element in developing the understanding of dynamic systems. This complex and growing area of research has no clear guidelines on what methods to use or in which circumstances. This paper critically discusses several possible network metrics to be used for a change point detection problem and conducts an experimental, comparative analysis using the Enron and MIT networks. Bayesian change point detection analysis is conducted on different global graph metrics (Size, Density, Average Clustering Coefficient, Average Shortest Path) as well as metrics derived from the Hierarchical and Block models (Entropy, Edge Probability, No. of Communities, Hierarchy Level Membership). The results produced the posterior probability of a change point at weekly time intervals that were analysed against ground truth change points using precision and recall measures. Results suggest that computationally heavy generative models offer only slightly better results compared to some of the global graph metrics. The simplest metrics used in the experiments, i.e. nodes and links numbers, are the recommended choice for detecting overall structural changes

    Scoring and assessment in medical VR training simulators with dynamic time series classification

    Get PDF
    This is the author accepted manuscript. the final version is available from Elsevier via the DOI in this recordThis research proposes and evaluates scoring and assessment methods for Virtual Reality (VR) training simulators. VR simulators capture detailed n-dimensional human motion data which is useful for performance analysis. Custom made medical haptic VR training simulators were developed and used to record data from 271 trainees of multiple clinical experience levels. DTW Multivariate Prototyping (DTW-MP) is proposed. VR data was classified as Novice, Intermediate or Expert. Accuracy of algorithms applied for time-series classification were: dynamic time warping 1-nearest neighbor (DTW-1NN) 60%, nearest centroid SoftDTW classification 77.5%, Deep Learning: ResNet 85%, FCN 75%, CNN 72.5% and MCDCNN 28.5%. Expert VR data recordings can be used for guidance of novices. Assessment feedback can help trainees to improve skills and consistency. Motion analysis can identify different techniques used by individuals. Mistakes can be detected dynamically in real-time, raising alarms to prevent injuries.Royal Academy of Engineering (RAEng)University of ExeterUniversity of Technology SydneyBournemouth Universit

    An in-depth comparison of methods handling mixed-attribute data for general fuzzy min-max neural network

    Full text link
    A general fuzzy min-max (GFMM) neural network is one of the efficient neuro-fuzzy systems for classification problems. However, a disadvantage of most of the current learning algorithms for GFMM is that they can handle effectively numerical valued features only. Therefore, this paper provides some potential approaches to adapting GFMM learning algorithms for classification problems with mixed-type or only categorical features as they are very common in practical applications and often carry very useful information. We will compare and assess three main methods of handling datasets with mixed features, including the use of encoding methods, the combination of the GFMM model with other classifiers, and employing the specific learning algorithms for both types of features. The experimental results showed that the target and James-Stein are appropriate categorical encoding methods for learning algorithms of GFMM models, while the combination of GFMM neural networks and decision trees is a flexible way to enhance the classification performance of GFMM models on datasets with the mixed features. The learning algorithms with the mixed-type feature abilities are potential approaches to deal with mixed-attribute data in a natural way, but they need further improvement to achieve a better classification accuracy. Based on the analysis, we also identify the strong and weak points of different methods and propose potential research directions
    • …
    corecore